1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
// This file is part of Astar.
// Copyright (C) Stake Technologies Pte.Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later
// Astar is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Astar is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Astar. If not, see <http://www.gnu.org/licenses/>.
use super::{oracle::CurrencyAmount, Balance, BlockNumber};
use parity_scale_codec::{Decode, Encode, MaxEncodedLen};
use frame_support::pallet_prelude::{RuntimeDebug, Weight};
use sp_arithmetic::ArithmeticError;
use sp_core::H160;
use sp_runtime::{
traits::{UniqueSaturatedInto, Zero},
FixedPointNumber,
};
use sp_std::hash::Hash;
/// Era number type
pub type EraNumber = u32;
/// Period number type
pub type PeriodNumber = u32;
/// Dapp Id type
pub type DAppId = u16;
/// Tier Id type
pub type TierId = u8;
// Tier Rank type
pub type Rank = u8;
/// Configuration for cycles, periods, subperiods & eras.
///
/// * `cycle` - Time unit similar to 'year' in the real world. Consists of one or more periods. At the beginning of each cycle, inflation is recalculated.
/// * `period` - Period consists of two distinct subperiods: `Voting` & `Build&Earn`. They are integral parts of dApp staking.
/// Length is expressed in standard eras or just _eras_.
/// * `era` - Era is the basic time unit in the dApp staking protocol. At the end of each era, reward pools for stakers & dApps are calculated.
/// Era length is expressed in blocks.
pub trait CycleConfiguration {
/// How many different periods are there in a cycle (a 'year').
///
/// This value has to be at least 1.
fn periods_per_cycle() -> PeriodNumber;
/// For how many standard era lengths does the voting subperiod last.
///
/// This value has to be at least 1.
fn eras_per_voting_subperiod() -> EraNumber;
/// How many standard eras are there in the build&earn subperiod.
///
/// This value has to be at least 1.
fn eras_per_build_and_earn_subperiod() -> EraNumber;
/// How many blocks are there per standard era.
///
/// This value has to be at least 1.
fn blocks_per_era() -> BlockNumber;
/// For how many standard era lengths does the period last.
fn period_in_era_lengths() -> EraNumber {
Self::eras_per_voting_subperiod().saturating_add(Self::eras_per_build_and_earn_subperiod())
}
/// For how many standard era lengths does the cycle (a 'year') last.
fn cycle_in_era_lengths() -> EraNumber {
Self::period_in_era_lengths().saturating_mul(Self::periods_per_cycle())
}
/// How many blocks are there per cycle (a 'year').
fn blocks_per_cycle() -> BlockNumber {
Self::blocks_per_era().saturating_mul(Self::cycle_in_era_lengths())
}
/// For how many standard era lengths do all the build&earn subperiods in a cycle last.
fn build_and_earn_eras_per_cycle() -> EraNumber {
Self::eras_per_build_and_earn_subperiod().saturating_mul(Self::periods_per_cycle())
}
/// How many distinct eras are there in a single period.
fn eras_per_period() -> EraNumber {
Self::eras_per_build_and_earn_subperiod().saturating_add(1)
}
/// How many distinct eras are there in a cycle.
fn eras_per_cycle() -> EraNumber {
Self::eras_per_period().saturating_mul(Self::periods_per_cycle())
}
}
/// Trait for observers (listeners) of various events related to dApp staking protocol.
pub trait Observer {
/// Called in the block right before the next era starts.
///
/// Returns the weight consumed by the call.
///
/// # Arguments
/// * `next_era` - Era number of the next era.
fn block_before_new_era(_next_era: EraNumber) -> Weight {
Weight::zero()
}
}
impl Observer for () {}
/// Interface for staking reward handler.
///
/// Provides reward pool values for stakers - normal & bonus rewards, as well as dApp reward pool.
/// Also provides a safe function for paying out rewards.
pub trait StakingRewardHandler<AccountId> {
/// Returns the staker reward pool & dApp reward pool for an era.
///
/// The total staker reward pool is dynamic and depends on the total value staked.
fn staker_and_dapp_reward_pools(total_value_staked: Balance) -> (Balance, Balance);
/// Returns the bonus reward pool for a period.
fn bonus_reward_pool() -> Balance;
/// Attempts to pay out the rewards to the beneficiary.
fn payout_reward(beneficiary: &AccountId, reward: Balance) -> Result<(), ()>;
}
/// Trait defining the interface for dApp staking `smart contract types` handler.
///
/// It can be used to create a representation of the specified smart contract instance type.
pub trait SmartContractHandle<AccountId> {
/// Create a new smart contract representation for the specified EVM address.
fn evm(address: H160) -> Self;
/// Create a new smart contract representation for the specified Wasm address.
fn wasm(address: AccountId) -> Self;
}
/// Multi-VM pointer to smart contract instance.
#[derive(
PartialEq,
Eq,
Copy,
Clone,
Encode,
Decode,
RuntimeDebug,
MaxEncodedLen,
Hash,
scale_info::TypeInfo,
)]
pub enum SmartContract<AccountId> {
/// EVM smart contract instance.
Evm(H160),
/// Wasm smart contract instance.
Wasm(AccountId),
}
impl<AccountId> SmartContractHandle<AccountId> for SmartContract<AccountId> {
fn evm(address: H160) -> Self {
Self::Evm(address)
}
fn wasm(address: AccountId) -> Self {
Self::Wasm(address)
}
}
/// Used to check whether an account is allowed to participate in dApp staking or not.
pub trait AccountCheck<AccountId> {
/// `true` if the account is allowed to stake, `false` otherwise.
fn allowed_to_stake(account: &AccountId) -> bool;
}
impl<AccountId> AccountCheck<AccountId> for () {
fn allowed_to_stake(_account: &AccountId) -> bool {
true
}
}
/// Trait for calculating the total number of tier slots for the given price.
pub trait TierSlots {
/// Returns the total number of tier slots for the given price.
fn number_of_slots(price: CurrencyAmount) -> u16;
}
/// Standard tier slots implementation, as proposed in the Tokenomics 2.0 document.
pub struct StandardTierSlots;
impl TierSlots for StandardTierSlots {
fn number_of_slots(price: CurrencyAmount) -> u16 {
let result: u64 = price.saturating_mul_int(1000_u64).saturating_add(50);
result.unique_saturated_into()
}
}
/// RankedTier is wrapper around u8 to hold both tier and rank. u8 has 2 bytes (8bits) and they're using in this order `0xrank_tier`.
/// First 4 bits are used to hold rank and second 4 bits are used to hold tier.
/// i.e: 0xa1 will hold rank: 10 and tier: 1 (0xa1 & 0xf == 1; 0xa1 >> 4 == 10;)
#[derive(Copy, Clone, Encode, Decode, Eq, PartialEq, MaxEncodedLen, scale_info::TypeInfo)]
pub struct RankedTier(u8);
impl RankedTier {
pub const MAX_RANK: u8 = 10;
/// Create new encoded RankedTier from tier and rank.
/// Returns Err(ArithmeticError::Overflow) if max value is not respected.
pub fn new(tier: TierId, rank: Rank) -> Result<Self, ArithmeticError> {
if rank > Self::MAX_RANK || tier > 0xf {
return Err(ArithmeticError::Overflow);
}
Ok(Self(rank << 4 | tier & 0x0f))
}
/// Create new encoded RankedTier from tier and rank with saturation.
pub fn new_saturated(tier: TierId, rank: Rank) -> Self {
Self(rank.min(Self::MAX_RANK) << 4 | tier.min(0xf) & 0x0f)
}
#[inline(always)]
pub fn tier(&self) -> TierId {
self.0 & 0x0f
}
#[inline(always)]
pub fn rank(&self) -> Rank {
(self.0 >> 4).min(Self::MAX_RANK)
}
#[inline(always)]
pub fn deconstruct(&self) -> (TierId, Rank) {
(self.tier(), self.rank())
}
}
impl core::fmt::Debug for RankedTier {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("RankedTier")
.field("tier", &self.tier())
.field("rank", &self.rank())
.finish()
}
}
impl RankedTier {
/// Find rank based on lower/upper bounds and staked amount.
/// Delta between upper and lower bound is divided in 10 and will increase rank
/// by one for each threshold staked amount will reach.
/// i.e. find_rank(10, 20, 10) -> 0
/// i.e. find_rank(10, 20, 15) -> 5
/// i.e. find_rank(10, 20, 20) -> 10
pub fn find_rank(lower_bound: Balance, upper_bound: Balance, stake_amount: Balance) -> Rank {
if upper_bound.is_zero() {
return 0;
}
let rank_threshold = upper_bound
.saturating_sub(lower_bound)
.saturating_div(RankedTier::MAX_RANK.into());
if rank_threshold.is_zero() {
0
} else {
<Balance as TryInto<u8>>::try_into(
stake_amount
.saturating_sub(lower_bound)
.saturating_div(rank_threshold),
)
.unwrap_or_default()
.min(RankedTier::MAX_RANK)
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn tier_and_rank() {
let t = RankedTier::new(0, 0).unwrap();
assert_eq!(t.deconstruct(), (0, 0));
let t = RankedTier::new(15, 10).unwrap();
assert_eq!(t.deconstruct(), (15, 10));
assert_eq!(RankedTier::new(16, 10), Err(ArithmeticError::Overflow));
assert_eq!(RankedTier::new(15, 11), Err(ArithmeticError::Overflow));
let t = RankedTier::new_saturated(0, 0);
assert_eq!(t.deconstruct(), (0, 0));
let t = RankedTier::new_saturated(1, 1);
assert_eq!(t.deconstruct(), (1, 1));
let t = RankedTier::new_saturated(3, 15);
assert_eq!(t.deconstruct(), (3, 10));
// max value for tier and rank
let t = RankedTier::new_saturated(16, 16);
assert_eq!(t.deconstruct(), (15, 10));
}
#[test]
fn find_rank() {
assert_eq!(RankedTier::find_rank(0, 0, 0), 0);
assert_eq!(RankedTier::find_rank(0, 100, 9), 0);
assert_eq!(RankedTier::find_rank(0, 100, 10), 1);
assert_eq!(RankedTier::find_rank(0, 100, 49), 4);
assert_eq!(RankedTier::find_rank(0, 100, 50), 5);
assert_eq!(RankedTier::find_rank(0, 100, 51), 5);
assert_eq!(RankedTier::find_rank(0, 100, 101), 10);
assert_eq!(RankedTier::find_rank(100, 100, 100), 0);
assert_eq!(RankedTier::find_rank(200, 100, 100), 0);
}
}